The effect of numerical integration in nonmonotone nonlinear elliptic problems with application to numerical homogenization methods

نویسندگان

  • Assyr Abdulle
  • Gilles Vilmart
چکیده

A finite element method with numerical quadrature is considered for the solution of a class of second-order quasilinear elliptic problems of nonmonotone type. Optimal a priori error estimates for the H and the L norms are derived. The uniqueness of the finite element solution is established for a sufficiently fine mesh. Application to numerical homogenization methods is considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization

We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L norm. We then derive optimal a priori error estimates in the H and L norm for a FEM with variational crimes due to numerical integration. As an application we d...

متن کامل

A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L2 and the H1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficien...

متن کامل

Analysis of the finite element heterogeneous multiscale method for nonlinear elliptic homogenization problems

An analysis of the finite element heterogeneous multiscale method for a class of quasilinear elliptic homogenization problems of nonmonotone type is proposed. We obtain optimal convergence results for dimension d ≤ 3. Our results, which also take into account the microscale discretization, are valid for both simplicial and quadrilateral finite elements. Optimal a-priori error estimates are obta...

متن کامل

Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems

A fully discrete analysis of the finite element heterogeneous multiscale method for a class of nonlinear elliptic homogenization problems of nonmonotone type is proposed. In contrast to previous results obtained for such problems in dimension d ≤ 2 for the H norm and for a semi-discrete formulation [W.E, P. Ming and P. Zhang, J. Amer. Math. Soc. 18 (2005), no. 1, 121–156], we obtain optimal con...

متن کامل

The Role of Numerical Integration in Numerical Homogenization

Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a microscopic solver at a finite number of points in the computational domain. In a multiscale framework the convergence of a FEM with numerical inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012